本文提出将小波分析与纳入时间序列依赖特征的长短期记忆(LSTM)神经网络相结合,构建金融时间序列数据预测模型,以克服现有模型对金融时间序列数据非平稳、非线性、序列相关等复杂特征以及数据间非线性交互关系无法反映的缺陷。同时,以道琼斯工业指数日收盘价为例,探究LSTM神经网络对实际金融时间序列数据的预测能力,比较其与多层感知机、支持向量机、K近邻、GARCH四种模型的预测效果。实证结果表明LSTM神经网络具有更高的预测精度,能够有效预测金融时间序列数据的长短期动态变化趋势,说明了其对金融时间序列数据预测的适用性与有效性。此外,对金融时间序列数据进行小波分解与重构,可有效提高LSTM预测模型的泛化能力,以及对长短期动态趋势的预测精度。
链接:基于LSTM神经网络的金融时间序列预测 - 中国知网 (cnki.net)